Augmented Lagrangian method for constrained nuclear density functional theory
نویسندگان
چکیده
منابع مشابه
Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems
In this paper, we propose a smoothing augmented Lagrangian method for finding a stationary point of a nonsmooth and nonconvex optimization problem. We show that any accumulation point of the iteration sequence generated by the algorithm is a stationary point provided that the penalty parameters are bounded. Furthermore, we show that a weak version of the generalized Mangasarian Fromovitz constr...
متن کاملAugmented Lagrangian method with nonmonotone penalty parameters for constrained optimization
At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual converg...
متن کاملA Modified Barrier-Augmented Lagrangian Method for Constrained Minimization
We present and analyze an interior-exterior augmented Lagrangian method for solving constrained optimization problems with both inequality and equality constraints. This method, the modified barrier—augmented Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods. It is based on the MBAL function, which treats inequality constraints with a modifi...
متن کاملAn adaptive augmented Lagrangian method for large-scale constrained optimization
We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augment...
متن کاملAn augmented Lagrangian trust region method for equality constrained optimization
In this talk, we present a trust region method for solving equality constrained optimization problems, which is motivated by the famous augmented Lagrangian function. It is different from standard augmented Lagrangian methods where the augmented Lagrangian function is minimized at each iteration. This method, for fixed Lagrange multiplier and penalty parameters, tries to minimize an approximate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal A
سال: 2010
ISSN: 1434-6001,1434-601X
DOI: 10.1140/epja/i2010-11018-9